Abstract
Water hyacinth (WH) was used to prepare biochar for phase change energy storage field to realize encapsulation and enhance thermal conductivity of phase change materials (PCMs) in this work. The maximum specific surface area of modified water hyacinth biochar (MWB) obtained by lyophilization and carbonization at 900 °C was 479.966 m2/g. Lauric-myristic-palmitic acid (LMPA) was used as phase change energy storage material, LWB900 and VWB900 were used as porous carriers respectively. Modified water hyacinth biochar matrix composite phase change energy storage materials (MWB@CPCMs) were prepared by vacuum adsorption method, with loading rates of 80 % and 70 % respectively. The enthalpy of LMPA/LWB900 was 105.16 J/g, which was 25.79 % higher than that of LMPA/VWB900, and the energy storage efficiency was 99.1 %. Moreover, the introduction of LWB900 increased the thermal conductivity (k) of LMPA from 0.2528 W/(m·K) to 0.3574 W/(m·K). MWB@CPCMs have good temperature control capability, and the heating time of LMPA/LWB900 was 15.03 % higher than that of LMPA/VWB900. In addition, after 500 thermal cycles, the maximum change rate of enthalpy of LMPA/LWB900 was 6.56 %, and it maintains a phase change peak, showing better durability than LMPA/VWB900. This study shows that the preparation process of LWB900 is the best, and the adsorption of LMPA has high enthalpy value and stable thermal performance, realizing the sustainable development of biochar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.