Abstract

We investigated a structural characteristics of acetyl fucoidan (CAF) isolated from commercially cultured Cladosiphon okamuranus. The CAF-induced macrophage activation and its signaling pathways in murine macrophage cell line, RAW 264.7 were also investigated. From the results of methylation analysis, CAF consisted of alpha-1-->3 linked L: -fucosyl residues and substituted sulfate and acetyl groups at C-4 on the main chain. CAF induced production of nitric oxide (NO), tumor necrosis factor-alpha and interleukin-6 in RAW 264.7 cells. Sulfate and acetyl groups of CAF involved in CAF-induced NO production. Neutralizing anti-Toll-like receptor 4 (TLR4), anti-CD14 and anti-scavenger receptor class A (SRA) but not anti-complement receptor type 3 monoclonal antibodies decreased CAF-induced NO production. The results of immunoblot analysis indicated that CAF activated mitogen-activated protein kinases (MAPKs) such as p38 MAPK, extracellular signal-regulated kinase (ERK)1/2 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). SB203580 (p38 MAPK inhibitor) and SP600125 (SAPK/JNK inhibitor), but not U0126 (MAPK/ERK kinase 1/2 inhibitor) decreased CAF-induced NO production. The results suggested that CAF induced macrophage activation through membrane receptors TLR4, CD14 and SRA, and MAPK signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.