Abstract

Biomass-derived heteroatom-doped carbons have been considered to be excellent lithium ion battery (LIB) anode materials. Herein, ultrathin g-C3N4 nanosheets anchored on N,P-codoped biomass-derived carbon (N,P@C) were successfully fabricated by carbonization in an argon atmosphere. The structural characteristics of the resultant N,P@C were elucidated by SEM, TEM, FTIR, XRD, XPS, Raman, and BET surface area measurements. The results show that N,P@C has a high specific surface area (SBET = 675.4 cm3/g), a mesoporous-dominant pore (average pore size of 6.898 nm), and a high level of defects (ID/IG = 1.02). The hierarchical porous structural properties are responsible for the efficient electrochemical performance of N,P@C as an anode material, which exhibits an outstanding reversible specific capacity of 1264.3 mAh/g at 100 mA/g, an elegant rate capability of 261 mAh/g at 10 A, and a satisfactory cycling stability of 1463.8 mAh/g at 1 A after 500 cycles. Because of the special structure and synergistic contributions from N and P heteroatoms, the resultant N,P@C endows LIBs with electrochemical performance superior to those of most of carbon-based anode materials derived from biomass in the literature. The findings in this present work pave a novel avenue toward lignin volarization to produce anode material for use in high-performance LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.