Abstract

This work was carried out to elucidate the structures resulting from acetaldehyde-induced modifications at the haemoglobin beta-chain N-terminal residues under different experimental conditions. A synthetic peptide (Val-His-Leu-Thr-Pro-Glu-Cys) of m/z 798, which represents the six N-terminal residues of the haemoglobin beta-chain N-terminus with an additional C-terminal cysteine, was used as a model compound. Peptide-acetaldehyde adducts were separated by reverse-phase HPLC. Fast-atom-bombardment MS and linked-scan (B/E) spectra were used to study adduct structures. Under nonreducing conditions at pH 7.4 (1:10 peptide/acetaldehyde molar ratio), two types of adducts of m/z 824 were formed, both with modifications at the N-terminal valine. These two adducts were shown to be a Schiff base, and a cyclic 2-methyl-imidazolidine-4-one. The 2-methyl-imidazolidine-4-one adduct was demonstrated to be formed via the Schiff base and to undergo dissociation gradually after 24 h. Reducing conditions at pH 7.4 (peptide /acetaldehyde molar ratio of 1:1 with 20 mM NaCNBH3) resulted in the formation of an adduct of m/z 826, which was shown to be an N-ethylated adduct of valine. A small amount of nonreduced adducts were also formed under these conditions. Reducing conditions at pH 9.0 (1:10 peptide/acetaldehyde molar ratio with 20 mM NaCNBH3) yielded two secondary, i.e. diethylated (m/z 854), products very rapidly. The cysteine residue of the peptide was not found to form an adduct with acetaldehyde under physiological pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.