Abstract

The morphological development of motoneuron pools of two hindlimb muscles of the rat, soleus (SOL) and tibialis anterior (TA), was studied in rats ranging in age between 8 and 30 postnatal days (P8-P30). Motoneurons were retrogradely labelled by injecting a cholera toxin B subunit solution directly into the muscles. This resulted in extensive labelling of motoneurons as well as their dendritic trees. The distribution of cross sectional areas of neuronal somata was determined for both muscles at various ages. Somal size increased considerably between P8 and P12, whereas growth was moderate between P12 and P20. The size distribution of SOL motoneurons was bimodal from P20, whereas the size distribution of TA motoneurons remained largely unimodal. The morphological development of the dendritic tree was studied qualitatively. The development of dendritic arborization within the SOL and the TA motoneuron pool showed major differences. The arborization pattern of dendrites of TA motoneurons was basically multipolar at all ages. In contrast, dendrites of SOL neurons tended to line up with the rostro-caudal axis and became organized in longitudinal bundles from P16 onwards. The relatively late appearance of dendrite bundles in the soleus motoneuron pool suggests that they might be related to the fine-tuning of neuronal activity rather than patterning of motor activity. The occurrence of dendrite bundles in SOL and not in TA motoneuron pools suggests that they may be related to the different afferent organization of this postural muscle or to its tonic activation pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call