Abstract

Photolyases (PHRs) repair the UV-induced photoproducts, cyclobutane pyrimidine dimer (CPD) or pyrimidine-pyrimidone (6-4) photoproduct [(6-4) PP], restoring normal bases to maintain genetic integrity. CPD and (6-4) PP are repaired by substrate-specific PHRs, CPD PHR and (6-4) PHR, respectively. Flavin adenine dinucleotide (FAD) is the chromophore of both PHRs, and the resting oxidized form (FAD(ox)), at least under in vitro purified conditions, is first photoconverted to the neutral semiquinoid radical (FADH(•)) form, followed by photoconversion into the enzymatically active fully reduced (FADH(-)) form. Previously, we reported light-induced difference Fourier transform infrared (FTIR) spectra corresponding to the photoactivation process of Xenopus (6-4) PHR. Spectral differences between the absence and presence of (6-4) PP were observed in the photoactivation process. To identify the FTIR signals where these differences appeared, we compared the FTIR spectra of photoactivation (i) in the presence and absence of (6-4) PP, (ii) of (13)C labeling, (15)N labeling, and [(14)N]His/(15)N labeling, and (iii) of H354A and H358A mutants. We successfully assigned the vibrational bands for (6-4) PP, the α-helix and neutral His residue(s). In particular, we assigned three bands to the C ═ O groups of (6-4) PP in the three different redox states of FAD. Furthermore, the changed hydrogen bonding environments of C ═ O groups of (6-4) PP suggested restructuring of the binding pocket of the DNA lesion in the process of photoactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call