Abstract

When cells of the dinoflagellates Prorocentrum micans and Gyrodinium cohnii are exposed to the proteolytic enzyme pronase or alternatively to ribonuclease, the structure of chromosomes is markedly altered. These changes have been observed electron microscopically in thin sections and spreads. Treatment of cells with pronase removed the bulk of nonfibrillar chromosome material completely unmasking fine chromosomal DNA fibres. Pronase had similar effect also on the dense material which is in contact with chromosomes; fibrillar loops protruding from chromosomes were exposed. However, pronase had no effect on the structural integrity of chromosomes. On the contrary, treatment of cells with ribonuclease loosened the package of chromosomal fibres. Thin sections showed that the tight package of longitudinal periodic structures seen in untreated chromosome was relaxed; chromosome extended longitudinally and formed a linear array of balls. When ribonuclease-treated chromosomes were spread, they were substantially more stretched than untreated chromosomes because of uncoiling of two oppositehanded spiral chromatid bundles. The effect of ribonuclease treatment suggests that unknown RNA species have an important role in the maintenance of permanent condensation of dinoflagellate chromosomes. On the other hand, proteins removable by pronase are also present. Most probably they are not linked to the chromosome structure but represent the matrix of nuclear activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.