Abstract
The atomic structure of the clean Cu(110) and the oxygen covered Cu(110) surfaces in the presence of carbon monoxide (CO) gas in the Torr pressure range at 298 K is studied using scanning tunneling microscopy (STM) and infrared reflection adsorption spectroscopy (IRRAS). We found that the initially clean surface reconstructs to form short rows of Cu atoms along the [1–10] direction separated by missing rows. The adsorbed CO molecules show two different C–O stretch vibration modes originating from molecules bound to Cu atoms with different coordination numbers, in the middle and at the end of the atomic rows. On the oxygen covered p(2 × 1) surface, adsorbed CO is observed only after removal of surface O atoms by reaction with CO. In the presence of 1:5 and 1:1 mixtures of O2 and CO at 298 K, the p(2 × 1)-O reconstructed surface transforms into Cu2O, instead of reducing to metallic Cu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.