Abstract

Background: The means by which the protein GAP accelerates GTP hydrolysis, and thereby downregulates growth signaling by p21 Ras, is of considerable interest, particularly inasmuch as p21 mutants are implicated in a number of human cancers. A GAP “arginine finger,” identified by X-ray crystallography, has been suggested as playing the principal role in the GTP hydrolysis. Mutagenesis studies, however, have shown that the arginine can only partially account for the 10 5-fold increase in the GAP-accelerated GTPase rate of p21. Results: We report electron spin-echo envelope modulation (ESEEM) studies of GAP-334 complexed with GMPPNP bound p21 in frozen solution, together with molecular-dynamics simulations. Our results indicate that, in solution, the association of GAP-334 with GTP bound p21 induces a conformational change near the metal ion active site of p21. This change significantly reduces the distances from the amide groups of p21 glycine residues 60 and 13 to the divalent metal ion. Conclusions: The movement of glycine residues 60 and 13 upon the binding of GAP-334 in solution provides a physical basis to interpret prior mutagenesis studies, which indicated that Gly-60 and Gly-13 of p21 play important roles in the GAP-dependent GTPase reaction. Gly-60 and Gly-13 may play direct catalytic roles and stabilize the attacking water molecule and β,γ-bridging oxygen, respectively, in p21. The amide proton of Gly-60 could also play an indirect role in catalysis by supplying a crucial hydrogen bonding interaction that stabilizes loop L4 and therefore the position of other important catalytic residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call