Abstract

The structural changes in the vanadium sample surface are studied as functions of the conditions of irradiation by pulsed high-temperature deuterium plasma and deuterium ion fluxes in the Plasma Focus installation. It is found that processes of partial evaporation, melting, and crystallization of the surface layer of vanadium samples take place in the plasma flux power density range q = 108–1010 W/cm2 and the ion flux density range q = 1010–1012 W/cm2. The surface relief is wavelike. There are microcracks, gas-filled bubbles (blisters), and traces of fracture on the surface. The blisters are failed in the solid state. The character of blister fracture is similar to that observed during usual ion irradiation in accelerators. The samples irradiated at relatively low power density (q = 107–108 W/cm2) demonstrate the ejection of microparticles (surface fragments) on the side facing plasma. This process is assumed to be due to the fact that the unloading wave formed in the sample–target volume reaches its irradiated surface. Under certain irradiation conditions (sample–anode distance, the number of plasma pulses), a block microstructure with block sizes of several tens of microns forms on the sample surfaces. This structure is likely to form via directional crack propagation upon cooling of a thin melted surface layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call