Abstract

The performed study has shown that in rats submitted to hypoxia (3 h, 7% O2) at the 14th day of embryogenesis (E14) as compared with control animals, density of distribution of cells in the brain cortex decreased for the first month of postnatal ontogenesis (maximally by 40.8% by P20). In dying neurons, swelling of the cell body, lyses of or ganoids, and disturbance of the cytoplasm membrane intactness were observed. Two waves of neuronal death by the mechanism of capsize-dependent apoptosis were revealed; the first involved large pyramidal neurons of the layer V (P10–20), the second-small pyramidal and non-pyramidal neurons of the layers II–III (P20–30). In neurosis of molecular layer, a decrease of the mean amount of labile synaptopodin-positive dendrite spines was observed, as compared with control. In rats exposed to hypoxia at E18, no changes of cell composition and structure of the nervous tissue were found in the studied brain cortex areas. Thus, formation of the cortex nervous tissue in postnatal ontogenesis of rats submitted to hypoxia at the period of neuroblast proliferation-migration is accompanied not only by a change of the cell composition of various cortex layers in early ontogenesis, but also by a decrease of the number of the synaptopodin-positive spines in the molecular layer, the decrease being preserved in adult animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.