Abstract

Three membrane proteins, OmpF porin fromEscherichia coli,bacteriorhodopsin fromHalobacterium salinarium,and the hexagonally packed intermediate (HPI) layer fromDeinoccocus radiodurans,were investigated with the atomic force microscope in buffer solution. A resolution of up to 0.8 nm allowed structural differences of individual proteins to be detected. OmpF porin exhibits different static conformations on the outer surface, which possibly represent the two conductive states of the ion channels. Reversible structural changes in the cytoplasmic surface of purple membrane have been induced by changing the force applied to the scanning stylus: doughnut-shaped bacteriorhodopsin trimers transformed into a structure with three pronounced protrusions when the force was reduced from 300 to 100 pN. Furthermore, individual pores of the inner surface of the HPI layer were observed to switch from an “open” to a “closed” state. Together, the structural changes in proteins monitored under physiological conditions suggest that direct observation of function-related conformational changes of biomolecules with the atomic force microscope is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.