Abstract

Eucommia ulmoides Oliver (EU) wood was successively treated by a combined system based on steam explosion pretreatment (SEP) and alkaline hydrogen peroxide post-treatment (AHPP). In this case, SEP was to disrupt the lignocellulosic structure, and the subsequent AHPP process was to isolate the high-purity lignin and cellulose-rich substrates. Results showed that the lignin fractions obtained during the AHPP exhibited smaller molecular weights, narrow polydispersity, less phenolic OH groups and lower syringyl/guaiacyl ratios (S/G) than those of the milled wood lignin (SEMWL) obtained from the only steam exploded EU. NMR characterization of lignin revealed that the AHPP process has a slight effect on the composition and molecular characteristic of lignin, and the lignin isolated had lower amounts of substructures (aryl-β-ether, resinol, and phenylcoumaran linkages) as compared to those in SEMWL. Moreover, the subsequent SEP followed by AHPP process enhanced the enzymatic hydrolysis of cellulose-rich substrates to a maximum value of 91.69%. It was found that the synergistic treatment removed most of lignin, degraded hemicelluloses, and incurred a higher crystalline index and surface area of the cellulose-rich substrates as compared to the only steam explosion pretreatment. The combination of the SEP and AHPP processes is an environmentally benign and advantageous scheme for the production of high-purity lignin and cellulose-rich substrates, which will be further transformed into the value-added biomaterials and bioethanol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.