Abstract
Using dissipative particle dynamics simulations, we study the swelling of lamellae-forming diblock copolymer films in a nonselective solvent. Both the parallel and the perpendicular orientations of lamellae in the film are studied. The swelling of the film with parallel lamellae is accompanied by an increase of their number. In doing so, the lamellar thickness reveals nonmonotonous behavior: affine growth (low degree of solvent uptake) is succeeded by a decrease in thickness (high degree of solvent uptake). Whereas the first regime reflects a finite size (film thickness) effect, the decrease is a more common effect, which is also valid for perpendicular lamellae, and is due to shrinkage of the diblock copolymers due to the shielding of unfavorable AB contacts by the solvent molecules. The film swelling leads to an increase of the number of perpendicular lamellae as well. However, such an increase is only possible if the film at first is dissolved and then condensed absorbing a certain amount of solvent. O...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.