Abstract

Coagulation of milk in the stomach is the first crucial step in its digestion. Using a human gastric simulator, the dynamic gastric digestion of goat and sheep skim milk were compared with that of cow skim milk, focusing particularly on their physical characteristics. The gastric contents were analyzed for changes in dry matter and microstructure, and the extent of protein digestion. The study revealed that the skim milk from all species formed a curd within the first 15 min of gastric digestion, at which time the pH was ~6.1 to 6.3. Compared with cow skim milk, the dry matter contents of the clots formed from goat and sheep skim milk were lower and higher, respectively, which was due to the differences in their total solids and protein contents. Microstructural analysis showed that, as digestion progressed, the clot structure became more cohesive, along with a decrease in moisture content, which in turn affected the breakdown and hydrolysis of caseins by pepsin; this phenomenon was similar for milk from all species. However, the extent of moisture retained in the sheep skim milk clot appeared to be lower than those of the cow and goat skim milk clots. In addition, the relative firmness of the sheep milk clot was higher than those of the cow and goat milk clots at the end of gastric digestion. The pattern of protein hydrolysis by pepsin was similar for the milk of all species, despite the differences in the proportions of different proteins. The study provided insight into the coagulation kinetics of goat and sheep skim milk under in vitro gastric digestion conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call