Abstract

White light emission of self-activated photoluminescence (PL) in Sr3AlO4F under 254nm light is only observed after annealing in a reducing atmosphere of 5%H2/95%Ar. High-resolution neutron powder diffraction reveals that the FSr6 octahedrons and AlO4 tetrahedrons in this anti-perovskite structure are closer packed in reduced than in air-annealed samples which show no PL. Careful analysis of temperature-dependent neutron powder diffraction data establishes smaller isotropic displacement parameters for Sr(1) and O in Sr3AlO4F annealed in a reducing atmosphere indicating that the denser packing of the polyhedral sub-units leads to a slightly deeper potential for the Sr(1) and O atoms. Both the air- and reductively-annealed samples have identical thermal expansion within the temperature range between 3 and 350K. The Debye temperatures were calculated using the atomic displacement parameters and show no significant differences between the air and reductively annealed samples making the Debye temperature a bad proxy for self-activated PL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.