Abstract
AbstractThis study used micro‐Raman spectroscopy, gas chromatography–mass spectrometry (GC–MS), and gas chromatography–flame ionization detector/thermal conductivity detector (GC–FID/TCD) to analyze the structure and pyrolysis reactions of nine typical coals and chars from Xinjiang. The study fitted 10 Gaussian bands of typical Xinjiang coal and investigated the changes in coal structure during coalification and pyrolysis. The results indicated that the reduction degree of CO structures in coal during coalification had a rough linear relationship with the Vdaf (dry ash‐free volatile matter) content. During coalification, the condensation of aromatic rings is accompanied by a continuous decrease of CO structures, while the contents of cross‐linking and substitution structures decrease persistently relative to the large aromatic ring structures. The influence of coal type on char yield for typical Xinjiang coal is within 15 wt.%; the influence on tar yield is within 8.5%, with a greater impact on the yield of alkanes and phenols in tar; the influence on CO yield in pyrolysis gas is within 6.3%. The relative content of large aromatic ring structures in coal is relatively stable during pyrolysis, while the relative content of small aromatic ring structures declines as coal transforms into char. The study inferred that small aromatic rings might decompose and transform into tar after pyrolysis reaction, which also resulted in a high selectivity of phenolic products in tar from most coal pyrolysis above 40%. This study revealed the structural changes and pyrolysis product distribution of nine typical coals and chars from Xinjiang, providing useful information for their utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.