Abstract

This study evaluated the structural changes, the immunohistochemical and gene expression of neurotrophic factors in submandibular gland in a rat model of depression, and their correlation with depression parameters during and after relief of depression by voluntary running. Forty-eight male Wistar rats were divided into control, control-exercise, depression, and depression-exercise groups. Depression was induced using forced swimming protocol, while the relief of depression was induced using the rat voluntary running wheels. The depressive state of rats was evaluated by measuring the immobility duration and the serum corticosterone level. The immune expression was evaluated by measuring the optical densities (ODs) using ImageJ software, and the gene expression levels were investigated. In the depression group, the convoluted ducts appeared dilated with numerous secretory granules. The number of PCNA-stained cells was significantly decreased in the depression group as compared to control group and then significantly increased in the depression-exercise group when compared to the depression group with a negative correlation to stress indicator. The ODs of immuno-expression for the brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) increased significantly in the depression group as compared to control group. Both BDNF and VEGF immuno-expression displayed positive correlation with the stress indicators. Both BDNF and VEGF gene expression results confirmed their immunohistochemical results. The findings of this study explored the role of submandibular gland in secreting neurotrophic factors and raise a flag for the possibility of using salivary secretions as dependable and easy parameter for estimation of chronic stressed patients.Mini AbstractThe submandibular gland neurotrophic factors immuno-expression can be used in estimating chronic depressive disorders as they are correlated with stress indicators during and after the relief of depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call