Abstract

Structural change of an ion-exchange membrane under a high electric field was investigated by comparing water dissociation and the FTIR spectra between the virgin membrane and that used at an overlimiting current density. From a series of water dissociation experiments at overlimiting current densities, it was observed that water dissociation in an anion-exchange membrane used at an overlimiting current density was higher than that in a virgin membrane at the same current density. The FTIR study revealed that the tertiary amine groups are formed from the quaternary ammonium groups on the anion-exchange membrane surface where ion depletion occurs under the influence of the applied strong electric field. The occurrence of increased water dissociation is considered to be caused by the protonation and deprotonation of the tertiary amine groups in the anion-exchange membrane. On the other hand, there was no structural change for the cation-exchange membrane under the electric field investigated in this study, which is coincident with the results of water dissociation experiments for the CMX membrane. In addition, we found that membrane resistance, permselectivity, and plateau length of the current–voltage curve were affected by the converted tertiary amine groups depending on the solution pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.