Abstract
Change-point detection in health care data has recently obtained considerable attention due to the increased availability of complex data in real-time. In many applications, the observed data is an ordinal time series. Two kinds of test statistics are proposed to detect the structural change of cumulative logistic regression model, which is often used in applications for the analysis of ordinal time series. One is the standardized efficient score vector, the other one is the quadratic form of the efficient score vector with a weight function. Under the null hypothesis, we derive the asymptotic distribution of the two test statistics, and prove the consistency under the alternative hypothesis. We also study the consistency of the change-point estimator, and a binary segmentation procedure is suggested for estimating the locations of possible multiple change-points. Simulation results show that the former statistic performs better when the change-point occurs at the centre of the data, but the latter is preferable when the change-point occurs at the beginning or end of the data. Furthermore, the former statistic could find the reason for rejecting the null hypothesis. Finally, we apply the two test statistics to a group of sleep data, the results show that there exists a structural change in the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.