Abstract
This paper gives an account of some of the recent work on structural breaks in time series models. In particular, we show how procedures based on the popular cumulative sum, CUSUM, statistics can be modified to work also for data exhibiting serial dependence. Both structural breaks in the unconditional and conditional mean as well as in the variance and covariance/correlation structure are covered. CUSUM procedures are nonparametric by design. If the data allows for parametric modeling, we demonstrate how likelihood approaches may be utilized to recover structural breaks. The estimation of multiple structural breaks is discussed. Furthermore, we cover how one can disentangle structural breaks (in the mean and/or the variance) on one hand and long memory or unit roots on the other. Several new lines of research are briefly mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.