Abstract

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.

Highlights

  • Epilepsy is a prevalent neurological disorder, comprising many different syndromes and conditions, affecting 0.6– 1.5% of the population worldwide (Bell et al, 2014)

  • A supplementary analysis of all-epilepsies, excluding individuals with hippocampal sclerosis or other lesions, revealed similar patterns of volume loss in the right thalamus and pallidum, and bilaterally enlarged ventricles; volume differences were not observed in the hippocampus (Supplementary Table 6)

  • In the largest coordinated neuroimaging study of epilepsy to date, we identified a series of quantitative imaging signatures—some shared across common epilepsy syndromes, and others characteristic of selected, specific epilepsy syndromes

Read more

Summary

Introduction

Epilepsy is a prevalent neurological disorder, comprising many different syndromes and conditions, affecting 0.6– 1.5% of the population worldwide (Bell et al, 2014). We assessed a wellcharacterized form of epilepsy: MTLE with hippocampal sclerosis, analysing patients with left- and right-sided hippocampal sclerosis as independent groups We examined another major set of epilepsy syndromes: IGE. Based on existing neuroimaging (Gotman et al, 2005; Bernhardt et al, 2009a; Liu et al, 2016), neurophysiological (Gotman et al, 2005), neuropathological (Thom et al, 2009), and genetic data (International League Against Epilepsy Consortium on Complex Epilepsies, 2014), we predicted that (i) biologically distinct epilepsy syndromes would exhibit shared patterns of structural abnormalities; (ii) MTLEs with left or right hippocampal sclerosis would show distinct patterns of hippocampal and extrahippocampal structural deficits; and (iii) IGEs would display subcortical volume and cortical thickness differences, compared to healthy controls

Materials and methods
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.