Abstract

Neisseria meningitidis, a gram negative bacterium, is the leading cause of bacterial meningitis and severe sepsis. Neisseria meningitidis genome contains 2,160 predicted coding regions including 1,000 hypothetical genes. Re-annotation of N. meningitidis hypothetical proteins identified nine putative peptidases. Among them, the NMB1620 protein was annotated as LD-carboxypeptidase involved in peptidoglycan recycling. Structural bioinformatics studies of NMB1620 protein using homology modeling and ligand docking were carried out. Structural comparison of substrate binding site of LD-carboxypeptidase was performed based on binding of tetrapeptide substrate 'L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine'. Inspection of different subsite-forming residues showed changeability in the S1 subsite across different bacterial species. This variability was predicted to provide a structural basis to S1-subsite for accommodating different amino acid residues at P1 position of the tetrapeptide substrate 'L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.