Abstract

Integrative production of new nanocomposites has been used to enhance favorable features of biomaterials for unlocking ultimate potential of different molecules. In the present study, advantageous properties of diamond like carbons (DLC) and germanium (Ge) like greater biocompatibility and antibacterial attributes were aimed to combined into a thin film. For this purpose, 400 nm DLC-Ge nanocomposite was coated on the borosilicate glasses via the magnetron sputtering and surface characteristics was analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and The Raman spectrum. Biocompatibility analysis were performed by 3-(4,5-Dimethylthiazol-2-yl) (MTT) cell viability assay and Hoechst 33258 fluorescent staining genotoxicity assessments on the human fibroblast cell line (HDFa). Finally, antibacterial properties of DLC-Ge nanocomposite coatings were investigated by Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923) bacterial attachment analysis. As a result of magnetron sputtering coating, nearly 400 nm thick DLC-Ge nanocomposite film showed a smooth, a non-porous, and a dense characteristic. Cell viability analysis showed that Ge-DLC coatings permits %95 cell surface growth of fibroblast cells. Also, there were no significant difference in aspect of nuclear abnormalities compared to the (-) control which showed nonmutagenic features of the thin film. Finally, antibacterial attachment analysis put forth that Ge-DLC coatings inhibits bacterial adhesion as %40 and %25 rates for P. aeruginosa and S. aureus bacterial strains, respectively. From these results, DLC-Ge nanocomposites could be proposed as a potential new biomaterial for various biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.