Abstract
To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.