Abstract

We have cloned and characterized cDNAs encoding the zebrafish IGF ligands and receptors. Sequence comparison showed that the primary structures of zebrafish IGF-I, IGF-II, and IGF-I receptors (IGF-IRs) have been highly conserved in vertebrates. In contrast to the presence of a single IGF-IR gene in mammals, two distinct IGF-IR genes, termed igf-1ra and igf-1rb, were found in zebrafish. Structural and phylogenetic analyses indicated that both genes are orthologous to the human igf-1r gene. Immunoprecipitation studies with specific antibodies showed that both IGF-IR genes are expressed and both receptors bind to IGFs and des(1-3)IGF-I, but not to insulin. The spatio-temporal expression patterns of the two IGF-IRs and their ligands were determined using a combination of RT-PCR, whole mount in situ hybridization, and immunocytochemistry. Transcripts for both IGF-I and -II mRNAs were found throughout embryogenesis in a ubiquitous manner. In adult tissues, IGF-I mRNA was more abundant in liver and testis, and its level was increased after GH treatment, whereas IGF-II mRNA was not regulated by GH. IGF-IRa and IGF-IRb mRNAs and proteins were expressed in overlapping spatial domains, but exhibited distinct temporal expression patterns. In particular, the relative level of IGF-IRa mRNA was low during early embryogenesis and increased in the hatched larva, whereas the situation was reversed for IGF-IRb mRNA. In adult zebrafish, the overall tissue distribution patterns of the two IGF-IRs were similar, but there were differences in their cellular localization and relative abundance in defined cells/regions. The differential expression pattern of IGF-IRa and IGF-IRb suggest that they may play distinct roles in regulating the growth and development of zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.