Abstract

In this study, 90 finite-element models are used to explore the behaviour of fibre-reinforced polymer (FRP) reinforced joints under combined in-plane bending (IPB) and axial load (AX). The effects of joint geometry, FRP layer count, and AX levels of the chord or brace are considered. Three typical failure modes are observed: chord plastic failure, brace plastic failure, and brace buckling failure. Increasing the number of FRP layers can ensure that failure is chord-related failure in a ductility manner rather than the unexpectedly brace-related brittle failure. Depending on the stress distribution of fibres, FRP reinforcement can restrict the deformation of joints subjected to complex loading patterns. Moreover, added FRP layers efficiently reduce the effect of brace AX on the IPB resistance. Finally, a modified strength equation is established, including the influence of FRP reinforcement, chord AX, and brace AX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.