Abstract

A testing and numerical modelling programme has been conducted to investigate the flexural buckling behaviour and resistance of press-braked S690 high strength steel angle section long columns. The testing programme adopted two press-braked S690 high strength steel equal-leg angle sections and included initial geometric imperfection measurements as well as twelve pin-ended column tests. The testing programme was accompanied by a numerical modelling programme, including a validation study, where finite element models were developed and validated against the test results, and a parametric study, where the validated finite element models were used to generate further numerical data over a wide range of cross-section dimensions and member effective lengths. The obtained test and numerical data were used to evaluate the existing design rules for press-braked S690 high strength steel angle section long columns, as specified in the North American specification, Australian/New Zealand standard and European code. The evaluation results revealed that the North American specification and Australian/New Zealand standard result in a high level of design accuracy and consistency, while the Eurocode leads to excessively conservative and scattered failure load predictions. Finally, a new design approach was proposed and shown to offer more accurate and consistent failure load predictions, with less calculation works, than the design codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call