Abstract

Massive reinforced concrete (MRC) structures are utilized in a variety of applications where both mechanical and thermal properties are of concern. A 1:2 large-scale test model of the steel-lined reinforced concrete penstock (a kind of MRC) and a coupled thermomechanical numerical analysis are both implemented to investigate the thermomechanical effects on structural behavior. Three different temperature fields and eight temperature gradients are selected to explore how the temperature affects the crack width, steel stress, and deformation. The results show that the numerical simulation results are consistent with the experimental results and that this method can be applied to other similar MRC structure analysis. The thermal effect can cause 10−3~10−2 mm thermal crack width and ±45 MPa thermal stress and this may lead the total crack width to exceed the limited value and the reinforcement stress beyond the yield strength. Consequently, the influence of the thermomechanical loads cannot be ignored and the corresponding temperature control measures must be taken to ensure structural safety and durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.