Abstract

Structural adhesive bonding is very often used joining method in aerospace and automotive industry, but in civil engineering, especially in facade applications, semi-flexible or semi-rigid adhesives are still rarely used. The article is focused on experimental analyses of structural adhesive joints intended for facade applications (e.g. bonding of facade cladding elements to the supporting substructure). The experimental study contains a comparison of the structural behavior of two different adhesives in joints with aluminum or zinc-electroplated steel substrates with various surface pre-treatments. The main goal of the study is a comparison of the mechanical properties of joints exposed and unexposed to laboratory ageing conditions; immersion on demineralized water according to ETAG 002 (Guideline for European Technical Approval for Structural Sealant Glazing Kits). Water content in adhesive layer can change significantly its mechanical properties and adhesion of glue to the substrate. Ageing resistance of joint can be improved by durability increasing of the substrate. For this reason, two different substrate materials with various surface treatments (mechanical roughening, smooth surface, anodizing) were tested. Different adhesive resistance against humid conditions was observed depending on the substrate material and pre-treatment. STP polymer joints showed strength reduction by 30% after immersion for almost all substrates, while acrylate adhesive proved 20% strength reduction for roughened aluminum substrate and 60% strength reduction for zinc-electroplated steel substrate with a roughened surface. The zinc-electroplated steel substrate showed problematic adhesion in case of the acrylate adhesive both reference set of specimens and specimens exposed to laboratory ageing. The positive effect of roughening on adhesion and ageing resistance was clearly observed in the specimens bonded by the acrylate adhesive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.