Abstract

Architectural designers frequently use glass plates that have shapes other than rectangular in both residential and commercial buildings. Commonly, one sees glass plates with trapezoidal, triangular, hexagonal, and circular shapes. For example; window glass in aircraft control tower cabs leans outward to enable ground controllers to have a good view of operations. Consequently, aircraft control tower cabs have glass plates that have trapezoidal shapes. This paper deals with the structural behavior of glass plates other than rectangular shapes. A higher order finite element model based upon Mindlin plate theory was employed to analyze different shapes of glass plates. First, a comparison between experimental and finite element results for a tested trapezoidal glass plate is presented, which shows a very good agreement. Then, the finite element model was used to compare load-induced stresses with those for bounding rectangular shapes. Results of analysis are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.