Abstract

Several properties of silymarin (SM) extract have been attributed to their three major flavonolignans (silybin, silychristin, and silydianin) and their 2,3-dehydro derivatives (2,3-dehydrosilybin, 2,3-dehydrosilychristin, and 2,3-dehydrosilydianin). Experimental findings have suggested that the antioxidative and protective activities of these compounds could be due to their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The mechanism by which SM compounds exert their effect has been suggested to be by disrupting the complex between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1). However, information about the structural and energetic basis of the inhibitory mechanism of SM compounds on the Nrf2-Keap1 pathway is lacking. We evaluated the binding properties of SM compounds because experimental findings have pointed to them as potential activators of Nrf2. Our study combined docking and molecular dynamics (MD) simulations with the Poisson–Boltzmann and generalized Born and surface area (MMPBSA and MMGBSA) methods and quantum mechanics-molecular mechanics (QMMM) calculations to investigate Keap1–ligand interactions. Our results predicted that silybinA and 2,3-dehydrosilybin bind to Keap1, forming interactions with the same pockets as those observed for the cocrystallized Keap1-Cpd16 complex but with more favorable binding free energies. These findings indicate that both natural compounds are potential activators of Nrf2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.