Abstract
Filamin A (FLNa) can effect orthogonal branching of F-actin and bind many cellular constituents. FLNa dimeric subunits have N-terminal spectrin family F-actin binding domains (ABDs) and an elongated flexible segment of 24 immunoglobulin (Ig) repeats. We generated a library of FLNa fragments to examine their F-actin binding to define the structural properties of FLNa that enable its various functions. We find that Ig repeats 9–15 contain an F-actin–binding domain necessary for high avidity F-actin binding. Ig repeats 16–24, where most FLNa-binding partners interact, do not bind F-actin, and thus F-actin does not compete with Ig repeat 23 ligand, FilGAP. Ig repeats 16–24 have a compact structure that suggests their unfolding may accommodate pre-stress–mediated stiffening of F-actin networks, partner binding, mechanosensing, and mechanoprotection properties of FLNa. Our results also establish the orientation of FLNa dimers in F-actin branching. Dimerization, mediated by FLNa Ig repeat 24, accounts for rigid high-angle FLNa/F-actin branching resistant to bending by thermal forces, and high avidity F-actin binding and cross-linking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.