Abstract
Protein kinase CK2 (CK2), a constitutively active serine/threonine kinase, is involved in a variety of roles essential to the maintenance of cellular homeostasis. Elevated levels of CK2 expression results in the dysregulation of key signaling pathways that regulate transcription, and has been implicated in cancer. The adenosine-5′-triphosphate-competitive inhibitor CX-4945 has been reported to show broad spectrum anti-proliferative activity in multiple cancer cell lines. Although the enzymatic IC50 of CX-4945 has been reported, the thermodynamics and structural basis of binding to CK2α remained elusive. Presented here are the crystal structures of human CK2α in complex with CX-4945 and adenylyl phosphoramidate at 2.7 and 1.3Å, respectively. Biophysical analysis of CX-4945 binding is also described. This data provides the structural rationale for the design of more potent inhibitors against this emerging cancer target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.