Abstract

PKCβII activation is achieved by primary phosphorylation at three phosphorylation sites, followed by the addition of secondary messengers for full activation. Phosphorylation is essential for enzyme maturation, and the associated conformational changes are known to modulate the enzyme activation. To probe into the structural basis of conformational changes on phosphorylation of PKCβII, a comprehensive study of the changes in its complexes with ATP and ruboxistaurin was performed. ATP is a phosphorylating agent in its phosphorylation reaction, and ruboxistaurin is its specific inhibitor. This study provides insight into the differences in the important structural features in phosphorylated and non-phosphorylated states of PKCβII. Less conformational changes when PKCβII is bound to inhibitor in comparison to when it is bound to its phosphorylating agent in both states were observed. The interactions of ruboxistaurin significant in restricting PKCβII to attain the conformational state competent for full activation are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.