Abstract

BackgroundChemokines are a subset of cytokines responsible for controlling the cellular migration of inflammatory cells through interaction with seven transmembrane G protein-coupled receptors. The blocking of a chemokine-receptor interaction results in a reduced inflammatory response, and represents a possible anti-inflammatory strategy, a strategy that is already employed by some virus and parasites. Anti-chemokine activity has been described in the extracts of tick salivary glands, and we have recently described the cloning and characterization of such chemokine binding proteins from the salivary glands, which we have named Evasins.Methodology/Principal FindingsWe have solved the structure of Evasin-1, a very small and highly selective chemokine-binding protein, by x-ray crystallography and report that the structure is novel, with no obvious similarity to the previously described structures of viral chemokine binding proteins. Moreover it does not possess a known fold. We have also solved the structure of the complex of Evasin-1 and its high affinity ligand, CCL3. The complex is a 1∶1 heterodimer in which the N-terminal region of CCL3 forms numerous contacts with Evasin-1, including prominent π-π interactions between residues Trp89 and Phe14 of the binding protein and Phe29 and Phe13 of the chemokine.Conclusions/SignificanceHowever, these interactions do not appear to be crucial for the selectivity of the binding protein, since these residues are found in CCL5, which is not a ligand for Evasin-1. The selectivity of the interaction would appear to lie in the N-terminal residues of the chemokine, which form the “address” whereas the hydrophobic interactions in the rest of the complex would serve primarily to stabilize the complex. A thorough understanding of the binding mode of this small protein, and its other family members, could be very informative in the design of potent neutralizing molecules of pro-inflammatory mediators of the immune system, such as chemokines.

Highlights

  • IntroductionChemokines (chemotactic cytokines) are a subset of cytokines primarily responsible for controlling the cellular migration of various inflammatory cells

  • Chemokines are a subset of cytokines primarily responsible for controlling the cellular migration of various inflammatory cells

  • The most compelling data is provided by nature - efficient strategies are employed by viruses and certain parasites to elude their hosts’ immune system, and an inflammatory response[4,5,6,7,8,9]

Read more

Summary

Introduction

Chemokines (chemotactic cytokines) are a subset of cytokines primarily responsible for controlling the cellular migration of various inflammatory cells. They compose a large family (approximately 40 known members in the human system)[1] of small proteins which share a relatively low level of sequence identity, but which display a remarkable structural homology, since they all contain the same monomeric fold. Chemokines are a subset of cytokines responsible for controlling the cellular migration of inflammatory cells through interaction with seven transmembrane G protein-coupled receptors. The blocking of a chemokine-receptor interaction results in a reduced inflammatory response, and represents a possible anti-inflammatory strategy, a strategy that is already employed by some virus and parasites. Anti-chemokine activity has been described in the extracts of tick salivary glands, and we have recently described the cloning and characterization of such chemokine binding proteins from the salivary glands, which we have named Evasins

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.