Abstract
Over a dozen major degenerative disorders, including myotonic distrophy, Huntington's disease and fragile X syndrome, result from unstable expansions of particular trinucleotides. Remarkably, only some of all the possible triplets, namely CAG/CTG, CGG/CCG and GAA/TTC, have been associated with the known pathological expansions. This raises some basic questions at the DNA level. Why do particular triplets seem to be singled out? What is the mechanism for their expansion and how does it depend on the triplet itself? Could other triplets or longer repeats be involved in other diseases? Using several different computational models of DNA structure, we show that the triplets involved in the pathological repeats generally fall into extreme classes. Thus, CAG/CTG repeats are particularly flexible, whereas GCC, CGG and GAA repeats appear to display both flexible and rigid (but curved) characteristics depending on the method of analysis. The fact that (1) trinucleotide repeats often become increasingly unstable when they exceed a length of approximately 50 repeats, and (2) repeated 12-mers display a similar increase in instability above 13 repeats, together suggest that approximately 150 bp is a general threshold length for repeat instability. Since this is about the length of DNA wrapped up in a single nucleosome core particle, we speculate that chromatin structure may play an important role in the expansion mechanism. We furthermore suggest that expansion of a dodecamer repeat, which we predict to have very high flexibility, may play a role in the pathogenesis of the neurodegenerative disorder multiple system atrophy (MSA). pfbaldi@ics.uci.edu, yves@netid.com, brunak@cbs.dtu.dk, gorm@cbs.dtu.dk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.