Abstract
Cyclic dinucleotides (CDNs) play key roles as second messengers and signaling molecules in bacteria andmetazoans. The newly identified dinucleotide cyclase in Vibrio cholerae (DncV) produces three different CDNs containing two 3'-5' phosphodiester bonds, and its predominant product is cyclic GMP-AMP, whereas mammalian cyclic GMP-AMP synthase (cGAS) produces only cyclic GMP-AMP containing mixed 2'-5' phosphodiester bonds. We report the crystal structures of V.cholerae and Escherichia coli DncV in complex with various nucleotides in the pre-reaction states. The high-resolution structures revealed that DncV preferably recognizes ATP and GTP as acceptor and donor nucleotides, respectively, in the first nucleotidyl transfer reaction. Considering the recently reported intermediate structures, our pre-reaction state structures providethe precise mechanism of 3'-5' linked cyclic AMP-GMP production in bacteria. A comparison with cGAS in the pre-reaction states suggests that the orientation of the acceptor nucleotide primarily determines the distinct linkage specificities between DncV and cGAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.