Abstract

RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (∼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.