Abstract

Ubiquitination, a modification in which single or multiple ubiquitin molecules are attached to a protein, serves as a signalling function that controls a wide variety of cellular processes. To date, two major forms of polyubiquitin chain have been functionally characterized, in which the isopeptide bond linkages involve Lys48 or Lys63. Lys48-linked polyubiquitin tagging is mostly used to target proteins for degradation by the proteasome, whereas Lys63-linked polyubiquitination has been linked to numerous cellular events that do not rely on degradative signalling via the proteasome. Apparently linkage-specific conformations of polyubiquitin chains are important for these cellular functions, but the structural bases distinguishing Lys48- and Lys63-linked chains remain elusive. Here, we report NMR and small-angle X-ray scattering (SAXS) studies on the intersubunit interfaces and conformations of Lys63- and Lys48-linked di- and tetraubiquitin chains. Our results indicate that, in marked contrast to Lys48-linked chains, Lys63-linked chains are elongated molecules with no stable non-covalent intersubunit interfaces and thus adopt a radically different conformation from that of Lys48-linked chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.