Abstract

BackgroundThe novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the ongoing 2019-2020 pandemic. SARS-CoV-2 is a positive-sense single-stranded RNA coronavirus. Effective countermeasures against SARS-CoV-2 infection require the design and development of specific and effective vaccine candidates.ObjectiveTo address the urgent need for a SARS-CoV-2 vaccine, in the present study, we designed and validated one cytotoxic T lymphocyte (CTL) and one helper T lymphocyte (HTL) multi-epitope vaccine (MEV) against SARS-CoV-2 using various in silico methods.MethodsBoth designed MEVs are composed of CTL and HTL epitopes screened from 11 Open Reading Frame (ORF), structural and nonstructural proteins of the SARS-CoV-2 proteome. Both MEVs also carry potential B-cell linear and discontinuous epitopes as well as interferon gamma–inducing epitopes. To enhance the immune response of our vaccine design, truncated (residues 10-153) Onchocerca volvulus activation-associated secreted protein-1 was used as an adjuvant at the N termini of both MEVs. The tertiary models for both the designed MEVs were generated, refined, and further analyzed for stable molecular interaction with toll-like receptor 3. Codon-biased complementary DNA (cDNA) was generated for both MEVs and analyzed in silico for high level expression in a mammalian (human) host cell line.ResultsIn the present study, we screened and shortlisted 38 CTL, 33 HTL, and 12 B cell epitopes from the 11 ORF protein sequences of the SARS-CoV-2 proteome. Moreover, the molecular interactions of the screened epitopes with their respective human leukocyte antigen allele binders and the transporter associated with antigen processing (TAP) complex were positively validated. The shortlisted screened epitopes were utilized to design two novel MEVs against SARS-CoV-2. Further molecular models of both MEVs were prepared, and their stable molecular interactions with toll-like receptor 3 were positively validated. The codon-optimized cDNAs of both MEVs were also positively analyzed for high levels of overexpression in a human cell line.ConclusionsThe present study is highly significant in terms of the molecular design of prospective CTL and HTL vaccines against SARS-CoV-2 infection with potential to elicit cellular and humoral immune responses. The epitopes of the designed MEVs are predicted to cover the large human population worldwide (96.10%). Hence, both designed MEVs could be tried in vivo as potential vaccine candidates against SARS-CoV-2.

Highlights

  • The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in the ongoing outbreak of a severe form of respiratory disease leading to death with a mortality rate of 3.4% [1]

  • Both designed multi-epitope vaccine (MEV) are composed of cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) epitopes screened from 11 Open Reading Frame (ORF), structural and nonstructural proteins of the SARS-CoV-2 proteome

  • The molecular interactions of the screened epitopes with their respective human leukocyte antigen allele binders and the transporter associated with antigen processing (TAP) complex were positively validated

Read more

Summary

Introduction

The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in the ongoing outbreak of a severe form of respiratory disease leading to death with a mortality rate of 3.4% [1]. SARS-CoV-2 is a novel coronavirus associated with a respiratory disease that initiated in the city of Wuhan in Hubei province, China. As of March 9, 2020, the worst case scenario was a US $2 trillion shortfall in global income, with a $220 billion impact on developing countries. The COVID-19 shock will cause a recession in several countries and depress global annual growth this year to below 2.5%, which is the recessionary threshold for the world economy [3]. The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the ongoing 2019-2020 pandemic. Effective countermeasures against SARS-CoV-2 infection require the design and development of specific and effective vaccine candidates

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call