Abstract

The natural product curacin A, a potent anticancer agent, contains a rare cyclopropane group. The five enzymes for cyclopropane biosynthesis are highly similar to enzymes that generate a vinyl chloride moiety in the jamaicamide natural product. The structural biology of this remarkable catalytic adaptability is probed with high-resolution crystal structures of the curacin cyclopropanase (CurF ER), an in vitro enoyl reductase (JamJ ER), and a canonical curacin enoyl reductase (CurK ER). The JamJ and CurK ERs catalyze NADPH-dependent double bond reductions typical of enoyl reductases (ERs) of the medium-chain dehydrogenase reductase (MDR) superfamily. Cyclopropane formation by CurF ER is specified by a short loop which, when transplanted to JamJ ER, confers cyclopropanase activity on the chimeric enzyme. Detection of an adduct of NADPH with the model substrate crotonyl-CoA provides indirect support for a recent proposal of a C2-ene intermediate on the reaction pathway of MDR enoyl-thioester reductases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call