Abstract
The cell wall of Streptococcus pneumoniae and several other micro-organisms is decorated with a number of the so-called choline-binding proteins (CBPs) that recognise the choline residues in the bacterial surface by means of highly conserved, concatenated 20-aa sequences termed choline-binding repeats (CBRs), that are composed of a loop and a β-hairpin structure. In this work, we have investigated the ability to fold in aqueous solution of a 14-aa peptide (LytA₁₉₇₋₂₁₀[wt]) and a single derivative of it, LytA₁₉₇₋₂₁₀[ND], corresponding to one of the six β-hairpins of the LytA pneumococcal amidase. Intrinsic fluorescence and circular dichroism spectroscopical measurements showed that both peptides spontaneously acquire a non-random conformation which is also able to bind the natural ligand choline. Furthermore, nuclear magnetic resonance techniques allowed the calculation of the structure of the LytA₁₉₇₋₂₁₀[ND] peptide, which displayed a β-hairpin conformation highly similar to that found within the full-length C-LytA module. These results provide a structural basis for the modular organisation of CBPs and suggest the use of CBRs as new templates for the design of stable β-hairpins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.