Abstract
Positionally isomeric 2-(2-quinolinyl)-1H-indene-1,3(2H)-dione mono- and disulfonic acids give rise to similar electrospray ionization (ESI) and atmosphere pressure chemical ionization (APCI) mass spectra, which show very abundant MH(+) ions and negligible fragmentation. The MH(+) ions of these isomeric acids exhibit notably different behavior under collision-induced dissociation (CID) conditions. The acids with a sulfonic group at position 8' in the quinoline moiety, adjacent to the N-atom, exhibit highly abundant [MH - H(2)SO(3)](+) ions (m/z 272 for the mono- and m/z 352 for the disulfonic acids), which are of lower abundance in the CID spectra of isomers with the SO(3)H group at other positions, remote from the nitrogen atom. The latter isomers undergo efficient eliminations of SO(3) and HSO(3). The isomeric diacids with one SO(3)H group at position 4 of the indene-1,3(2H)-dione moiety, adjacent to one of the carbonyl groups, undergo highly efficient elimination of H(2)O. Mechanistic pathways, involving interactions between adjacent groups, are proposed for the above regiospecific fragmentations. Pronounced different behavior has been also observed in negative ion tandem mass spectrometric measurements of the sulfonic acids. The distinctive behavior of the isomeric acids was strongly pronounced when the measurements were performed with an ion trap mass spectrometer (LCQ), and much less so with a triple-stage quadrupole instrument (TSQ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.