Abstract

This study addresses the reactivity patterns of human cytotoxic HLA class I epitope-specific monoclonal antibodies in Ig-binding and complement component C1q-binding Luminex assays in comparison with complement-dependent lymphocytotoxicity data reported at the 13th International HLA Workshop. Some monoclonal antibodies reacted similarly with epitope-carrying alleles in all three assays but others showed different reactivity patterns. These reactivity differences were analyzed with HLAMatchmaker and we incorporated the concept that eplets are essential parts of structural epitopes which can contact the six Complementarity Determining Regions (CDRs) of antibody. The data show that technique-dependent reactivity patterns are associated with distinct differences between polymorphic amino acid configurations on eplet-defined structural epitopes. The findings have been viewed in context of antigen-antibody complex formation that results in the release of free energy necessary to stabilize binding and to induce conformational changes in the antibody molecule to expose the C1q binding site, the first step of complement activation. Moreover the amount of free energy should be sufficient to induce a conformational change of C1q thereby initiating the first stages of the classical complement cascade leading to lymphocytotoxicity. The complement-fixing properties of HLA antibodies require not only specific recognition of eplets but also depend on interactions of other CDRs with critical amino acid configurations within the structural epitope. Eplet-carrying alleles that lack such configurations may only bind with antibody. This concept is important to our understanding whether or not complement-fixing donor-specific HLA antibodies can initiate antibody-mediated rejection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.