Abstract

High-temperature proton exchange membrane (HT-PEM) fuel cells offer more advantages than low-temperature PEM fuel cells. The ideal characteristics of HT-PEMs are high conductivities, low-humidity operation conditions, adequate mechanical properties, and competitive costs. Various molecular moieties, such as benzimidazole, benzo-thiazole, imide, and ether ether ketone, have been introduced to polymer chain backbones to satisfy the application requirements for HT-PEMs. The most common sulfonated polymers based on the main chain backbones have been employed to improve the rties. Side group/chain engineering, includ crosslinking, has been widely applied to HT-PEMs to further improve their proton conductivity, thermal stability, and mechanical properties. Currently, phosphoric acid-doped polybenzimidazole is the most successful polymer material for application in HT-PEMs. The compositing/blending modification methods of polymers are effective in obtaining high PA-doping levels and superior mechanical properties. In this review, the current progress of various membrane materials used for HT-PEMs is summarized. The synthesis and performance characteristics of polymers containing specific moieties in the chain backbones applied to HT-PEMs are discussed systemically. Various modification approaches and their deficiencies associated with HT-PEMs are analyzed and clarified. Prospects and future challenges are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call