Abstract

Efforts from the TB Structural Genomics Consortium together with those of tuberculosis structural biologists worldwide have led to the determination of about 350 structures, making up nearly a tenth of the pathogen's proteome. Given that knowledge of protein structures is essential to obtaining a high-resolution understanding of the underlying biology, it is desirable to have a structural view of the entire proteome. Indeed, structure prediction methods have advanced sufficiently to allow structural models of many more proteins to be built based on homology modeling and fold recognition strategies. By means of these approaches, structural models for about 2,877 proteins, making up nearly 70% of the Mycobacterium tuberculosis proteome, are available. Knowledge from bioinformatics has made significant inroads into an improved annotation of the M. tuberculosis genome and in the prediction of key protein players that interact in vital pathways, some of which are unique to the organism. Functional inferences have been made for a large number of proteins based on fold-function associations. More importantly, ligand-binding pockets of the proteins are identified and scanned against a large database, leading to binding site-based ligand associations and hence structure-based function annotation. Near proteome-wide structural models provide a global perspective of the fold distribution in the genome. New insights about the folds that predominate in the genome, as well as the fold combinations that make up multidomain proteins, are also obtained. This chapter describes the structural proteome, functional inferences drawn from it, and its applications in drug discovery.

Highlights

  • Tuberculosis continues to be a major burden, causing about 4500 deaths per day [1]

  • Advances in sequence-based bioinformatics approaches have become more reliable in transferring functional annotation, integrating sequence and protein family classifications

  • The structural annotation pipeline To obtain a structural proteome of M. tuberculosis H37Rv, an integrated structural annotation pipeline was developed

Read more

Summary

Introduction

Tuberculosis continues to be a major burden, causing about 4500 deaths per day [1]. The problem is worsened due to the deadly synergy of Mycobacterium tuberculosis (TB) with HIV and the emergence of multi-drug resistant varieties. Functional annotation procedures as applied to the 2877 models involved detection of conserved residues in the protein family, location of ligand or DNA binding site(s), similarity with enzyme active sites, and possible ligand associations.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.