Abstract

The structures of the formyl ion (HCO+) and its rare gas tagged counterparts (Rg-HCO+, Rg = He, Ne, Ar, Kr, and Xe) were studied at the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)]/aug-cc-pVTZ level of theory and basis set. A linear structure for these tagged complexes was predicted. The Rg binding energies for Rg-HCO+ are also examined at the CCSD(T) level. It was found that the binding interaction increases from He-HCO+ to Xe-HCO+. A multilevel potential energy surface built at the CCSD(T) and second-order Møller-Plesset perturbation levels of theory were used to study these species' vibrational spectra. By changing the Rg in the first-solvation shell for HCO+, the Fermi resonance interaction between the first H+ bend overtone and the asymmetric and symmetric H-C-O stretches can be modulated. This Fermi resonance modulation is demonstrated by examining a series of rare gas solvated HCO+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call