Abstract

To investigate the effect of strain on bismuth telluride films, we applied different compressive and tensile strains to thin films by changing the bending radius of a flexible substrate so the strain ranged from −0.3% (compressive) to +0.3% (tensile). The structural properties of the strained thin films, composed of nanosized grains, were analyzed by x-ray diffraction and scanning electron microscopy. For all samples the main peak was the (015) diffraction peak; crystal orientation along the (015) growth direction was slightly enhanced by application of compressive strain. The thermoelectric properties of strained bismuth telluride thin films were evaluated by measurement of electrical conductivity, Seebeck coefficient, and power factor. The magnitude and direction of the applied strain did not significantly affect the power factor, because when the strain changed from compressive to tensile the electrical conductivity increased and the absolute Seebeck coefficient decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.