Abstract

Perovskite-structured materials, owing to their chemical-physical properties and tuneable composition, have extended their range of applications to chemical looping processes, in which lattice oxygen provides the oxygen needed for chemical reactions omitting the use of co-fed gaseous oxidants. To optimise their oxygen donating behaviour to the specific application a fundamental understanding of the reduction/oxidation characteristics of perovskite structured oxides and their manipulation through the introduction of dopants is key. In this study, we investigate the structural and oxygen desorption/sorption properties of Sr1-xCaxFeO3-δ and SrFe1-xCoxO3-δ (0 ≤ x ≤ 1) to guide the design of more effective oxygen carriers for chemical looping applications at low temperatures (i.e. 400-600 °C). Ca A- or Co B-site substituted SrFeO3-δ show an increased reducibility, resulting in a higher oxygen capacity at T ≤ 600 °C when compared to the unsubstituted sample. The quantitative assessment of the thermodynamic properties (partial molar enthalpy and entropy of vacancy formation) confirms a reduced enthalpy of vacancy formation upon substitution in this temperature range (i.e. 400-600 °C). Among the examined samples, Sr0.8Ca0.2FeO3-δ exhibited the highest oxygen storage capacity (2.15 wt%) at 500 °C, complemented by excellent redox and structural stability over 100 cycles. The thermodynamic assessment, supported by in situ XRD measurements, revealed that the oxygen release occurs with a phase transition perovskite-brownmillerite below 770 °C, while the perovskite structure remains stable above 770 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.